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Abstract

The Lax-Ricthmyer theory is used to study the error amplification

properties of 18 space marching finite difference schemes, for the 1-D

nonlinear inverse heat conduction problem. A non-dimensional param-

eter Q. involving the time step AT the effective thermal diffusivity a,

and the distance I from the sensor to the active surface, is found to

provide a measure of the numerical difficulty of the inverse calcula-

tion. All 18 schemes are unstable and blow-up like 10^^, where the

constant A depends on the particular numerical method. There are

substantial differences in the A's however, and some newly constructed

algorithms, employing forward time differences at non-adjacent mesh

points, are shown to produce relatively low values of A. Using synthetic

noisy data, a nonlinear reconstruction problem is considered for which

Q = 25. This problem simulates heat transfer in gun barrels when a

shell is fired. It is shown that while most of the 18 schemes cannot

recover the thermal pulses at the gun tube wall, two of the new meth-

ods provide reasonably accurate results. A tendency to underestimate

peak values in fast, narrow thermal pulses is also noted.

Key Words: nonlinear heat flow, marching difference schemes, er-

ror amplification, numerical e.xperiments.

AMS (MOS) subject classifications: 35R25, 65M30.
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1 Introduction

The inverse heat conduction problem, (IHCP), whereby surface temperature

and gradient histories are calculated from histories measured at an accessible

interior location, remains a basic problem in many areas of heat transfer.

On page 2 of the monograph by Beck. Blackwell, and St. Clair, [1], the

authors indicate a variety of apphcations, and they estimate that some 300

papers have been written in this general area as of 1985. A substantial

mathematical literature has also developed around the IHCP during the last

30 years or so. as may be seen from the bibhography in Hao and Gorenflo.

[6]. An interesting new approach based on systems theory, together with

a brief overview of current methods and some further references, may be

found in hlarquardt and Auracher. [9].

The present paper focuses exclusively on space marching finite difference

methods for the one dimensional problem in a medium with temperature-

dependent thermal properties. Several such methods are presented in Beck

et al, [1]. Here, we do not discuss procedures based on replacing the heat

conduction ec[uation with an approximating hyperbohc equation, [5], [17],

nor methods combining space marching with time marching, [11]. Using

the Lax-Ricthmyer theory, [12], [13], we examine the norms of discrete

3



solution operators associated with several marching schemes, in the Fourier

transform domain. This enables us to demonstrate the considerable dif-

ferences which exist between various methods with regard to error ampli-

fication, and leads us to construct some new schemes that are relatively

well-behaved. Numerical reconstruction experiments with synthetic noisy

data are then used to illustrate the capabilities of the new schemes. By

comparing with known ‘exact' solutions, we demonstrate credible approxi-

mate solutions at parameter values that are not tractable by more standard

marching algorithms.

It develops that the role of time differencing is paramount, typically over-

shadowing the influence of space differencing, that some 0(At) methods are

preferable to some 0{At^) methods, and that a certain kind of 0(Af) for-

ward time differencing can dramatically reduce error amphfication. The

beneficial aspects of using future temperatures have been noted many times

in the literature. However, w'e provide some quantitative facts that are inde-

pendent of the particular surface profiles to be reconstructed, but pertain to

the schemes themselves. Computational exploration of the characteristics of

18 different methods, albeit in hmited ranges of parameter values, indicates

the following. In these methods, the mcLximum amplification factor behaves

roughly according to Amax ~ 10^^, where fl = /(aAt)“C2^ / being the dis-
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tance between the internal sensor and the active surface, and a the effective

thermal diffusivity. The non dimensional quantity Q reflects the underly-

ing physical situation, including the desired resolution At. and provides a

measure of the difficulty of the particular IHCP: Q. has the same value in

each marching scheme. On the other hand. A depends primarily on the time

differencing option associated with a particular method and is essentially

independent of the physical parameters and mesh sizes. We show that some

forms of forward differencing are more effective than others in producing

lower values for A. while one particular future temperature method leads to

a larger A and makes things worse.

Marching difference schemes have been a mainstay in the numerical com-

putation of well-posed imtidil value problems. In many cases, difficult nonhn-

ear problems can be solved effectively by taking sufficiently small marching

steps while lagging the nonlinearity at the previous step. A Courant con-

dition. hnking the sizes of the space and time increments, may need to

be obeyed to maintain computational stabihty. However, for ill-posed ini-

tial value problems such as the IHCP. all consistent marching difference

schemes are necessarily unconditionally unstable. In that case, no Courant

condition exists that can prevent drastic error amplification if the mesh is

made sufficiently fine, [12, p. 59]. The salient observation of the present
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paper is that such marching algorithms can ‘blow-up’ at widely different

rates as At, Ax
J.

0. Given a fixed fine mesh, error amplihcation may be

totally overwhelming in some methods, while being sufficiently mild in other

methods to permit reasonably accurate answers.

Our frame of reference for these comparisons is an artificial but repre-

sentative problem with units. The object is to estimate temperature and

flux histories on the surface of an SAE 4340 steel plate, using measurements

from an internal sensor located 0.50 mm away from the active surface, in

the presence of 0.1% added noise. The effective thermal diffusivity is on the

order of 0.004 mm^ miUisec~^

,

while the surface histories are pulse wave-

forms with a rise time of 10 millisec or less. To accommodate possibly

rapid changes, 1000 equispaced mesh points are placed on the time interval

0 < t < 100 millisec. ( 11 ~ 25 in the present case). This choice of process

parameters and time scales is motivated by an interesting physical problem

involving nonlinear inverse heat transfer in gun barrels, and the pulse wav’e-

forms at the plate surface are chosen to simulate thermal histories at the

inside wall of a cannon when a shell is fired, [4], [16]. Reconstruction of such

waU histories is important in the study of gun tube erosion, [2]. Here, fabri-

cated surface temperature histories, together with thermal diffusivity data

for SAE 4340 steel, are used to create synthetic histories at the sensor loca-
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tion by numerically solving a direct nonlinear heat flow problem. Uniformly

distributed random noise is then added to these data, and the performance

of various marching procedures is evaluated on this data set.

2 The direct nonlinear problem

The synthetic data are generated as follows. With ~(n) = p{u) Cp{u)

the density-speciflc heat product. k{u) the thermal conductivity. a{u) =

k{u)/^'{u) the thermal diffusivity. and f{t) = 300( 1 — 0.02f - 0.12 x 10 ).

consider the following direct problem for the heat conduction equation:

^(u) lit = {k{ii) 0 < .r < 1mm. 0 < t < lOOmillisec.

u{x,Q) = 300° K, 0 < X < 1mm.

uil.t) = {f{t) + 3o00e~^'^°ksin{7ct/40)}°K. 0 <t < lOOmiUisec.

u{0,t) = {300 4- 250.sin(7rt/100)}°A'. 0 < ^ < lOOmU/fsec. (1)

The boundary x = 1 is the active surface, and u{l.t) is pulse shaped, in-

creasing from 300°/i* to near lOOO^A' during the first ten or so milliseconds.

See Fig. 1. A boundary condition at x = 0 is imposed in order to close the

system. (The choice for nfO.f) is artificial and does not reflect any particu-

lar physical process). We assume a constant w’ in the present hypothetical

experiment, although nonlinearity in u; poses no additional difficulties and



is provided for in the marching schemes of Section 3. On dividing both

sides of the heat equation by cj, k{u) is replaced by a{iL) on the right hand

side. Using thermophysical data for SAE 4340 steel, [14], [15, p. 395], we

postulate the following linear approximation for a{u) in gun tubes:

a( )= {0.01 — 8.0 X 10~*^( — 250)} mm^ milli.sec~^

,

(2)

in the range 300° A' < u < 1000° A’. In that range. a{u] undergoes a 240%

change. Numerical computation of this direct problem was accomplished us-

ing PDECOL, [8]. This software package uses piecewise polynomial colloca-

tion methods for spatial discretization, together with adaptive step selection

for marching the solution forward in time. Note that since both boundary

temperatures are prescribed in (1), the boundary fluxes must be determined

by solving the direct problem. In fact, temperature and flux histories at 1000

equispaced mesh points on the time interval 0 < t < Tmax — lOOmillisec,

were obtained at several interior locations Xj, as well as at the two bound-

aries X = 0 and x = 1. (Data at x = 0, 0.5, and 1, are shown in Fig. 1).

Each interior data value h{tk) was then perturbed, by adding to it a ran-

dom number drawn from a uniform distribution in the range ±0.001h(i a.-)-

In the inverse problem calculation, interior data at any one such x, may be

used as initial values in space marching schemes for reconstructing surface
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histories. (Some schemes use u(x,. t) and u{Xt - A.T.f). rather than u(x,, #)

and iZx(x,. t)). In a practical setting, temperature histories at two inter-

nal locations may be used to obtain temperature or flux histories at

any intermediate points y, xi < y < X 2 > by numerically solving the direct

problem on xi < x < X 2 -

3 Marching schemes and the inverse problem

Let u’j denote u(jAx.nAt). where A.r. Af are constant space and time in-

crements. and let aj = ({Axy^'{iL'^))/{^t k{u^)). 3j = k'{u’J)/k{u'^). We

formulate 18 possible explicit schemes, marching in the positive x direction,

for obtaining u(l,t) and Uj(l.t). The steady state conditions u{x.O) =

Constant. ?/j(x.O) = 0. are used throughout. For schemes involving future

temperatures, the duration of the sensor record. Tmax — -TAf. is assumed

sufficient to permit reconstruction of the surface waveform on a prescribed,

physically relevant time interval, Tq — niAt, in < X

.

For such schemes, it

is sometimes expedient to obtain solution values at or near Tmai^ by simple

extrapolation of immediately preceding values. This procedure typically in-

duces violent spurious oscillations in the vicinity of Tmax- In our numerical

experiments, provided the scheme was otherwise well-behaved, such end-
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point artifacts did not extend beyond 5 millisec to the left of Tmax^ and

they did not affect reconstruction of the surface history on the remainder

of the interval. Generally, the alternative of using backward difference for-

mulae near Tnutxi as in method S5 below, did not prevent such end-point

instabilities. The first three schemes below are nonhnear generalizations of

methods presented in [1, Chapter 6].

The first method, due to D ’Souza, is based on implicit time differencing

for the direct problem;

2
(3)

Let Uj = Solving for we may reformulate (3) as a coupled first

order space marching system involving only the nodes j, j + 1.

SI D’Souza 1.

u”
,

n = 1 zV

Explicit time differencing may also be used and leads to;
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S2 D’Souza 2.

= (2-(t; )u“ + - u]

^'j+l
= n — 1 ..... -V — 1

.

,
.V = 2Ah - “hh

^J+1
= 2Ah

“hi = g.
OIIo

The 'leapfrog' scheme is one example of an unconditionally unstable scheme

for the direct problem. It is obtained by replacing the left hand side in (3)

with u^’( )( - u^“^)/(2At). As a space marching coupled system for

the IHCP this becomes:

S3 Leapfrog.

= 2uy + i

^'j+i n = 1,..., A - 1.

,
.V

^j+i =

Ai “A+l

“j+i = U% ^j+i -
A- (

6
)

S1-S3 are 0(Ar) in the x-variable and lead to zz(lA), u{l — Ax,t)- The

gradient at the wall can be obtained by using backward differences in x.
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Another approach is to begin with the heat conduction equation rewritten

as a space marching first order system, [3], [7], and then proceed to discretize

that system. With q = k{u)iij:^ we have

Ux = q/k{u

qj. =

Consider first O(A.r) schemes. The simplest example is the following:

S4 Backward.

= + Ax qj

^+1 = A Ax Cu'(

0 0 n

^J+l (
8 )

A method due to Hills and Hensel, [7], uses centered time differencing in the

interior and backward time differencing at n — X

.

S5 Hills and Hensel, (1986).

= li] + {c7]/2){u^^^ - + A.X- q]/k{a])

:V

;+i

C+i

q] -f Ax - u^-^)/{2Xt),

uf + cr^i uf - Xx qf /k{ Uj

qf + A.r

u^j + Xx q^kiu^j), q^^^
=

12

n = 1,. . ., iV - 1,

(
9 )



^'\'e now construct some further schemes based on
( < )•

S6 Central.

= u] + Ax q^/{k{u])

= + )(«"+' )/(2Ai). n = l......*v - 1
,

“iVi
= - '‘jX

V
Ij+i =

- Uy = Qy (10)

S7 Future 0.

^7+1 ~ Ax q’J/ikiu])

II
qj + Az + ' -- - 3ti’])/{-2At). n = 1, . ... .V - 2.

,
X-k
J+l 2Vi - Vi

= = 1.0

^^y q%l = Qy (11)

Each of S5, S6, S7 are O(Ah^) schemes in the interior, with S7 using for-

ward time differencing. We next consider 0{At) forward time differencing;

the forward formulae in S9-S11 are seldom used in well-posed problems.

S8 Future 1.

Wj+i = + Sx q]/k{u^)
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= <," + ^x u.’{u’]){u’]+' - tt")/At. 72 = 1. . . . ,A’- 1,

^}+i = 2 “ill’
-

2<?j+l‘
-

-j;+f

=
'Jj+i

= Jj- (12)

S9 Future 2.

ii" + A,r q"/k(u")

^Ij + i
5" + A,c^'(u;)(«"+'^-u")/(2Ai), 72 = 1, . . .,A- 2,

r= 2«;^^-‘ -

= k=l.O

= 9?+i = 9°- (13)

SIO Future 3.

^^J+1
= Uj + Ax qjlikiu"-)

57+

1

=
q] + Ax c.'(tt")(u;+^ - u;)/(3At). 72 = 1, . . .,iV - 3,

=

=: 29iV-' - fc = 2,h0

«“+i = 9°' (14)
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Sll Future 4.

Wj+I = + Sx q] /{kiu^j)

'If+l — Q’j 'k ^’( «y(«y-u;)/(-iA(), n = 1. . .,.,A- 4,

^J+l
- _~ -^^+1 “; + l

- '/yy-'. fc = 3.2.i.o

«“+i
II CJ

o

+ (15)

To construct 0( Aj:^) schemes, consider the second order Taylor expansion

= t/" + Ax( + 0.5( Ax)^(f^xx)j

Q]+i
= + Ax(r^^)y + 0.5f A2’)"(c7xx)j • (16)

We may use (7) to express a^-x in terms of Uf, qt, as follows.

Ihx = qj:/k{u) - qk'{ll)u^/P{u)

= uj( iL)ut/k{ u) - q^k'i u)/k^{ u)

5xx — Op' (

n

^Ux T ^

= ^'{u)qut/k{u) ^ ijj{u)qt/k{u) - ^'{u)k'{ii)qut/k^{u). (17)

Substituting from (7) and (17), we may replace the space derivatives on the

right hand side of (16) with time derivatives. Thus, with = Ax/fc(ny),

b’J
= 0.o{Ax)'^^{u])/k{u]), c] = -0.r3{Ax)-k'{u])/k^{u^), d] = Axu;{u]),
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and e’J = 0.o{Ax)'^ f^uj'{u'J)/kiu^) - ^'{u’J)k'{u'J)/k^{u'^)^, we obtain

= it^ + a']q] + b^{ut)] + c]{q]f

Qj^i = qj+d^iut)] + b]{qt)] + e]q]{ut)l (18)

Several schemes can be constructed from (18) depending on the manner in

which the time derivatives (Uf)" and {qt)"] are approximated. We define 7

such schemes. R4 and R6 - Rll, by stipulating that the time derivatives in

( 18) be approximated as in S4 and S6 - Sll respectively, with corresponding

end-point conditions.

4 Lax-Richtmyer analysis

The Lax-Richtmyer theory of difference
.
pproximations is based on Fourier

analysis of the finearized problem with constant coefficients, posed on the

whole real t-hne. In particular, the choice of ‘boundary* approximations at

t = 0 and t = Tmax, will play no role whatever when this theory is applied to

IHCP space marching schemes. Despite its shortcomings, Fourier analysis of

the constant coefficient model problem is quite often a surprisingly effective

diagnostic tool. Referring to equations (3) through (18) in Section 3, let

3'l
= 0, aj = a = (Ar)'V(Af anz*n), i-i

- 7 = c" =

= 0, aj = /i, = O.oaAt, and dy = yAf. Following [12. Chapters 3. 4],

16



we now view each space marching scheme as a 2 x 2 system

= C{Ax. j = 0 M - 1,

^^’0(0 = + -oc < / < oc.
( 19 )

Here. M is the number of space steps Ax from the interior sensor to the

active surface: C(Ax. At) is a 2 x 2 matrix of finite-difference operators in

the t variable, assumed appUed at every point
:
/(f) denotes exact initial

data for the IHCP such that a unique solution u{x. t) exists with sufficiently

many bounded derivatives; and S{t), assumed small, represents the devia-

tion of the actual input data from this exact data. Let Tj{t) denote the

'truncation error' on the line /Ax. and let €j{t) = uq(f) - u(/Ax.f). be

the difference between the exact solution of the analytic problem, and the

numerical solution with noisy data. We have

6j>i(f) = C(Ax. Af)6j(f) -f Ax rj(f).

eo{t) = Sit). (
20

)

Therefore.

(j+iit) = ^(f) + Ai y] a- T,(t).
(21 )



In (22), II II
denotes the norm in the time variable, is the ‘discrete

solution operator’, and
||

Tj ||= 0[:\t + Ax), or smaller, as At, Ax
J.

0.

Therefore, for small
|| ^ ||,

one may expect reasonable accuracy in the recon-

structed surface histories, provided At, Ax can be chosen sufficiently small

without making
|| ||

too large. The latter cpiantity measures the amount

by which noise in the interior data becomes amplified when the marching

calculation reaches the active surface. We are interested in comparing the

norms of discrete solution operators for the various space marching schemes

on the same mesh.

Fourier transforming the time variable, and putting 9 = <^At, where ^

is the transform variable, we may find the amplification matrix G{i\x,9)

for each of Sl-Sll, R4, and R6-R11. G(Ax.^) is the Fourier image of

C(Ax,At), [12, p. 67], expressed in terms of the normalized frequency 9.

Moreover.

11
11= max |G''^(«)|p = .-I™,,,, (23)

0<6I<t

where
|

|/2 denotes the Euclidean norm of G. All such matrices G = [Qij]

are 2 x 2, and we write them in the compact notation [gw-, g\ 2 \ 921 ^ 922 ]- We

have:

SI G = [2 + (T-(7e-'^-l;l,0]
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5 2 G = [2- c^ + (7e'^-l;l,0]

53 G = [2 lasinO.

54 G = [l,/z;7(l-e-*^),ll

55 G = [1 + icfsinO^ /i; 27 sin 9, 1
]

5 6 G —
[
1

,
/i; Z7.sm^, 1

]

57 G = [Laz;7/;(^)/2,1] ; p{9) - - 3

5 8 G = [l./i; 7 (e'^ - 1 ), 1
]

59 G = [l,//;7(e2'^- l)/2,ll

510 G = [l.^i;7(e3*^ - l)/3, 1]

511 G- [L/^;7(e‘''^- l)/4,ll

R4 G = [1 4- (7{l- e-‘^)/2 ,/i; 7 (l - + a(l - e-*^)/2
]

R 6 G = [1 + zcr(5in6^)/2, /i; Z7 .szn^, 1 + ^o(5^7^^^)/2]

R7 G = [1 + crj[)(^)/4,|r, 7p(^)/2 ,
1 4- apiO)!^]

R 8 G = [1 + - l)/ 2 ,//; 7 (e*^ - 1), 1 + cr(e'^ - l)/2
]

R9 G = [1 + cr(e2»'^ - l)/4,/i;7(e2t^ _ i)/ 2,

1

-f-
- l)/4]

RIO G = [1 4- cr(e^'^ — l)/ 6
, 7 (e^*^ - l)/3, 1 + cr[e^^^ — l)/ 6

]

Rll G = [1 4- - l)/ 8 ,//; 7 (e-^'^ - l)/4 ,

1

+ - l)/ 8
]

For the gun barrel IHCP discussed in Sections 1 and 2, we have, in pre-

viously indicated units, a„un - 0.004, At = 0.1, and the sensor is located
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at a distance / = 0.5 from the active surface 2- = 1 . We place M = 1000

equispaced nodes on /, so that Ax = 5 x 10“'‘. In particular, this gives

Q„„nAt/(A 2 )^ = 1600, so that the Courant condition for explicit time

marching schemes in the direct problem, [12. p. 189], is severely violated. To

complete the parameter specihcation, we give the constant value 3.2 and

define knun = ^'Ctnun = 0.0128. With these parameter values, it is instruc-

tive to evaluate at discrete points Oj = [j
— l)7r/81, j = 1,82,

for each of the above 18 schemes. This may be done easily using the soft-

ware package MATLAB, [10]. The results of these computations are best

described when broken up into three groups as follows:

Group I (Fig. 2A) O(A^) Past Temperature Schemes: SI, S4, R4.

Group II (Fig. 2B) 0{At^) Schemes: S3, S5, S 6
,
S7, R6

,
R7.

Group III (Fig. 2C) 0{i\t) Future Temperature Schemes: S 2
,
S 8

,

S9, SIO, Sll, R8
,
R9, RIO, Rll.

The Figures display To/710 { |G^^°(^)|/ 2 }
versus the normalized frequency

on 0 < < TT.

As is evident from Figs. 2A, 2B, and 2C, the maximum amplification fac-
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tor. -4njax- ranges from about 10^® in Si. to about 10'^ in Sll, Rll. More-

over. only slight changes occur in these Figures when the number of space

nodes is reduced from 1000 to 300. In particular, characteristic frequency

domain signatures remain the same; Group I schemes increase monotoni-

cally with 6, Group II schemes are symmetric about 0 — t/ 2. with a single

maximum at ;r/2. while Group III schemes may have multiple maxima. The

three schemes in Group I employ distinct space differencing methods, but

share backward time differencing. In Group II. S5, S6, R6, have identi-

cal traces: along with S3, these schemes use centered time differencing, but

each of the four schemes uses a different space differencing technique. In

Group III. S2 results from using exphcit differencing in D 'Souza's method

Si. This simple switch to forward time differencing reduces Amax by almost

ten orders of magnitude, and renders S2 comparable to S5, S6, R6. Still

greater reductions are provided in S8, R8. by applying the same switch

to S4, R4. The question arises as to whether substantial improvements

in S5, S6, R6, might not result from replacing centered time differencing

with a forward differencing formula that maintains 0( At^) accuracy in the

interior. Schemes S7, R7, were formulated with that purpose in mind.

However, as may be seen from Fig. 2B. this particular future temperature

method actually increases An^ax- It is also clear from the foregoing that the
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time differencing option plays a dominant role in determining frequency do-

main signatures, and that some 0{At) methods may be preferable to some

O(At^) methods. The behavior of Si, S2, S3. indicates that the stability

or instability of these schemes in the time marching direct problem, is of no

particular relevance in the space marching inverse problem.

The remaining six schemes in Group III. S9, R9, SlO, RIO, Sll, Rll,

are based on unconventional forms, of forward differencing that induce cu-

rious frequency domain signatures, as well as substantial further reductions

in A,nax- The behavior of Amax can be correlated with the non dimen-

sional parameter Q = l{ar,unAt)~^^^ mentioned in the Introduction. We

have Q. = 25 in Figs. 2A, 2B, and 2C. In Fig. 3A, Group I schemes are

reexamined with / = 1.0 and all other parameter values unchanged, so that

A = 50. In Fig. 3B, Group II schemes are reevaluated with At = 0.01

and all other parameters as in Fig. 2B. so that Q = 79. Finally, in Fig.

3C, Group III schemes are considered with Q = 250, resulting from using

At = 0.01, amtn = 0.0004, kmtn = 0.00128, and the remaining parameters

as in Fig. 2C. Together with further computations involving various com-

binations of parameters and a fair range of Q. values, these Figures indicate

an asymptotic rule of thumb, A^ax ~ 10^^, where A is a slowly varying

function of the parameters that may be taken as a constant. Thus, A % 0.6
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in Group I scliemes. In Group II. A 0.3 for S5, S6, R6. while A % 0.35

for S7, R7. In Group HI. A ^ 0.12 for Sll, Rll. gradually increasing to

about twice that value for S8, R8. In Groups II and III. the R schemes,

which are second order accurate in the space variable, are better behaved

than their S counterparts. In summary, the best schemes in Group II blow-

up hke the square root of SI. while the best schemes in Group III blow-up

like the fifth root of Si.

5 A numerical experiment

It remains to demonstrate the relevance of the preceding analysis in the

computation of the nonlinear IHCP. on a finite t-interval. with end-point

conditions. With reference to Fig. 1 in Section 2. we seek to recover rapid

temperature and flux pulses at a: = 1, from highly attenuated interior data.

Consider first the easier problem of reconstruction from = 0.7 when no

random noise is added to the data. In this case Q = 15. The sfight amount

of residual data noise originating from numerical computation of the direct

problem, is nevertheless sufficient to trigger instabilities if Group I schemes

are used. On the other hand. Group II and III schemes perform weU un-

der these conditions. For example, as shown in Fig. 4, S5, S6, S7, S8,
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reproduce the exact temperature and gradient histories. An irksome side

effect of Group III schemes with multiple maxima is an overdamping of cer-

tain frequency ranges, which causes S9, SlO, Sll, to underestimate the

true solutions. This effect is more pronounced in the case of the narrow

flux pulse, than in the case of the temperature pulse. For the temperature

history, the true maximum is underestimated by 0.7% with S9. 1.1% with

SlO, and 1.4% with Sll. The corresponding peak gradient underestimates

are 3.6%). 5.3%, and 6.8%. respectively. The worst case, Sll, is shown in

Fig. 5. Note that the last five milliseconds of each trace in Figs. 4 and 5

have been deleted; this is the region where the reconstruction is seriously

affected by end-point instabilities.

The situation changes drastically when we attempt reconstruction from

X = 0.5 with 0.1% random noise added to the interior data. Now. with

Q. = 25, all Group I and Group II schemes are hopelessly unstable. The

behavior of S6, shown in Fig. 6, is typical of Group II schemes and leads

to amplitudes on the order of 10®. In addition, most Group III schemes fail

to produce recognizable traces in this representative, yet difficult, inverse

computation. However, useful information is recoverable with either of Sll,

Rll, as may be seen in Fig. 7. Although badly contaminated by noise and

unable to match the true maximum, the reconstructed gradient provides
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a fair representation of the concentrated flux waveform at 2: = 1. The

slower temperature pulse emerges relatively well. The result of post-filtering

the preceding computation in the time domain, using a three term moving

average, is shown in Fig. 8. If the level of noise in the interior data is

increased to 1%. Sll, Rll fail to produce satisfactory results, even after

smoothing. On the other hand, with 0.0l9c added noise. S9, R9 provide

reconstructions of somewhat better quality than in Figs. 7 and S. and with

better estimates of the true maxima.

We have not discussed regularization oi the IHCP in the present paper.

For the linear problem with constant coefficients. [3]. or. more generally,

whenever the analytic solution operator for the direct problem is known.

Tikhonov regularization techniques may be applied to control the growth of

errors. In the case analyzed in [3]. such regularization is shown to be equiv-

alent to subjecting the initial data to a specific low-pass filter in the Fourier

transform domain. One may also apply the appropriate fractional power of

that filter at every step of a space marching calculation. For nonlinear prob-

lems. stepwise filtering based on the related linearized problem at each step

can sometimes be useful, [4]. However, regularization techniques in march-

ing computations are likely to be effective only if the underlying difference

scheme blows-up relatively slowly with Q. The design of such regularized
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marching algorithms is another motivation for the present study.
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Figure 1

Exact solution of the direct problem at x = 0, 0.5, 1.0.
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Figure 2

Behavior of on the mesh At = 0.1, Ax = 5 x 10“'^.
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Behavior of at various values of H.
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Nonlinear reconstruction under favorable conditions.
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Overdaiiiping in Sll leads to 1.4% (6.8%) underestimate of peak

temperature (gradient) in reconstruction from x = 0.7.
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Behavior of S6 under adverse conditions is typical of Group II schemes.
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Unsmoothed Sll reconstruction.
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Smootlied Sll reconstruction using three term moving average.
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